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Advanced Coupling Matrix Synthesis Techniques
for Microwave Filters

Richard J. Cameron, Fellow, |EEE

Abstract—A general method is presented for the synthesis of
the folded-configuration coupling matrix for Chebyshev or other
filtering functions of the most general kind, including the fully
canonical case, i.e, IN prescribed finite-position transmission
zeros in an Nth-degree network. The method is based on the
“N 4 2" transversal network coupling matrix, which is able
to accommodate multiple input/output couplings, as well as the
direct source-load coupling needed for the fully canonical cases.
Firstly, the direct method for building up the coupling matrix for
the transversal network is described. A simple nonoptimization
process is then outlined for the conversion of the transversal
matrix to the equivalent “ N 4 2” folded-configuration coupling
matrix. The folded matrix may be used directly to realize mi-
crowave bandpass filters in a variety of technologies, but some
of these could require awkward-to-realize cross-couplings. This
paper concludes with a description of two simple procedures
for transforming the transversal and folded matrices into two
novel network configurations, which enable the realization of ad-
vanced microwave bandpass filters without the need for complex
inter-resonator coupling elements.

Index Terms—Asymmetric filtering functions, Chebyshev
characteristics, circuit synthesis methods, coupling matrix,
microwave filters, transver sal network.

I. INTRODUCTION

N [1], a recursive method for deriving the transfer and

reflection polynomials for Chebyshev filtering functions
with prescribed finite-position transmission zeros (TZs) was
presented. This was followed by the synthesis methods for
the corresponding “N x N” coupling matrix, ready for the
realization of a microwave filter with resonators arranged as
a folded cross-coupled array. It was mentioned in [1] that,
athough the polynomial synthesis procedure was capable
of generating N TZs for an Nth-degree network (i.e., fully
canonical), that a maximum of only N — 2 finite-position
zeros could be realized by the N x N coupling matrix. This
excluded some useful filtering characteristics, including those
that require multiple input/output couplings, which have been
finding applications recently [3].

In this paper, a method is presented for the synthesis of the
fully-canonical or “ N 4 2" folded coupling matrix, which over-
comes some of the shortcomings of the conventional V x N
coupling matrix. The N + 2 or “extended” coupling matrix has
an extrapair of rowstop and bottom and an extrapair of columns
left and right surrounding the “core” N x N coupling matrix,
which carry the input and output couplings from the source and
load terminations to resonator nodes in the core matrix.
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Fig. 1. Canonica transversa array. (@) N—resonator transversal array
including direct source-oad coupling Mz, . (b) Equivalent circuit of the kth
“low-pass resonator” in the transversal array.

The N + 2 matrix has the following advantages, as compared
with the conventional coupling matrix.

< Multiple input/output couplings may be accommodated,
i.e, couplings may be made directly from the source
and/or to the load to internal resonators, in addition to the
main input/output couplings to the first and last resonator
in the filter circuit.

* Fully canonica filtering functions (i.e., Nth-degree char-
acteristics with NV finite-position TZs) may be synthe-
sized.

e During certain synthesis procedures that employ a
sequence of similarity transforms (rotations), it is some-
times convenient to temporarily “park” couplings in the
outer rows or columns, whilst other rotations are carried
out elsewhere in the matrix.

The paper begins by detailing the procedure for synthesizing
the NV +2 coupling matrix from the transversal array circuit rep-
resentation of thefiltering function (see Figs. 1(a) and 2), which
follows on from the methods originally established in [4]-{7]
and later extended in [1]. The new method is actually smpler to
derivethan those used to synthesize the IV x IV coupling matrix,
not requiring the Gram—Schmidt orthonormalization stage. The
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Fig. 2. N + 2 fully canonical coupling matrix [M] for the transversal array.
The“core” N x N matrix is indicated within the double lines. The matrix is
symmetric about the principal diagonal, i.e., M;; = M;;.

reduction of the transversal coupling matrix to the N + 2 folded
cross-coupled array coupling matrix is then outlined, following
much the same procedure asin [1]. A demonstration of the use
of the techniques to synthesize the coupling matrix for a fully
canonical filtering function is included.

Finally, the direct synthesis of two novel filter configurations
are presented; one starting with the transversal coupling matrix
and the second based on the folded coupling matrix. Both areap-
plicable to the design of microwave bandpassfiltersin avariety
of technologies, but the second, in particular, has some impor-
tant implementation advantages that should considerably ease
the design and production of high-performance filters for space
or terrestrial communications systems.

Il. SYNTHESIS OF THE “N + 2” TRANSVERSAL
COUPLING MATRIX

The approach that will be employed to synthesize the NV + 2
transversal coupling matrix will be to construct the two-port
short-circuit admittance parameter matrix [Yy] for the overall
network in two ways; the first from the coefficients of the ra-
tional polynomials of the transfer and reflection scattering pa-
rameters So; (s) and S11(s), which represent the characteristics
of the filter to be realized, and the second from the circuit el-
ements of the transversal array network. By equating the [Yy]
matrices as derived by these two methods, the elements of the
coupling matrix associated with the transversal array network
may be related to the coefficients of the So1 (s) and 511 (s) poly-
nomials.

A. Synthesis of Admittance Function [Yx] From the Transfer
and Reflection Polynomials

The transfer and reflection polynomials that are generated in
[1] for the general Chebyshev filtering function are in the form
P(s)
eE(s)

F(s)

Sn(s) = erF(s)

511(8) =

@

where e = (1/V10%L/10 — 1) . (P(s)/F(s))|s=;, RL isthe
prescribed returnlossin decibels, and it isassumed that the poly-
nomials F(s), F(s), and P(s) have been normalized to their
respective highest degree coefficients. Both F(s) and F'(s) are
Nth-degree polynomials, IV is the degree of the filtering func-
tion, whilst P(s), which contains the finite-position prescribed
TZs, is of degree nr,, where ng, is the number of finite-posi-
tion TZs that have been prescribed. For a realizable network,
ng Must be <N.

er is unity for all cases except for fully canonical filtering
functions, where all the TZs are prescribed at finite frequencies,
i.e, ng, = N. Inthis case, the value of S;(s) (in decibels) is
finite at infinite frequency, and if the highest degree coefficient
of the polynomials E(s), F(s), and P(s) areeachnormalized to
unity, e g Will haveavalue dightly greater than unity asfollows:

en= ———. @

It isalso important to ensure that the transfer and reflection vec-
tors are orthogonal in order to satisfy the unitary conditions for
the scattering matrix [8]

St - Sikl + 8ot - S;l =1
Sog - 552 + Sy - STQ =1
Si1 - Sia + 821 - S35, =0. ©)

From (3), it may be shown (see [2, p. 177]) that the phases
¢, 61, and 6, of the vectors S2; (s), S11(s), and Saa(s), respec-
tively, are related by the following:

61+ 6

¢

=A== (2k+1) (4)

w
2
where k is an integer.

Equation (4) showsthat the difference A, between the phase
of the S3; vector, and the average of the phases of the S;; and
S22 vectors must be an odd multiple of # /2 rad. For this con-
dition to be satisfied at any value of the frequency variable s,
the ng, TZs of Sy;(s) must be positioned symmetrically about
the imaginary (jw) axis or upon the imaginary axisitself. Sim-
ilarly, the pattern of the N zeros of Sa2(s) must either be co-
incident with those of S;1(s) on the imaginary axis, or form
mirror-image pairs about the imaginary axiswith corresponding
off-axiszerosof 511 (). Inthisway, the sum of the phasesof the
individual vectorsthat make up the overall phases of the vectors
So1, S11, etc., will be multiples of 7 /2 rad.

Since Sa1(s), S11(s), and Saz(s) share a common denom-
inator polynomia E(s), it is only necessary to consider their
numerator polynomialsasfar as (4) isconcerned. The multiples
of 7 /2 rad referred to above therefore depend upon the number
of finite-position transmit (Tx) zeros ng, for the Sy; (s) numer-
ator polynomia P(s), and the degree NV of the filtering func-
tion for the S11(s) and S22(s) numerator polynomials (F#'(s)
and F™*(s), respectively). With thisin mind, it follows that, for
the left-hand side of (4) to produce an odd multiple of = /2 rad,
theinteger quantity N — ng, must itself be odd. Thus, to ensure
orthogonality between the F'(s) and P(s) vectors, i.e.,, A, is
an odd multiple of 7 /2 rad, it is necessary to multiply the P(s)
polynomial by j whenever N — n, isan even integer.
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The numerator and denominator polynomials for the 421 (s)
and y22(s) elements of [Yx] may be built up directly from the
transfer and reflection polynomials for So;(s) and Sy1(s) [1].
For a double-terminated network with source and load termina-
tionsof 1 Q2

Y22(8) =y220(5)/ya(s) = na(s)/mi(s)

and

yo1(s) =yo1n(s)/ya(s) = (P(s)/e) /mai(s),  for N even
Y22(8) = y22n(5)/ya(s) = ma(s)/ni(s)
and

y21(5) =21 (5)/ya(s) = (P(s)/e) /ni(s),  for N odd
where

my(s) =Re(eo+ fo)+jlm(e; + f1)s+Re(ez + fo)s*+- - -
n1(s) = jlm(eo+ fo)+Re(er + f1)s+jlm(ea+ fo)s*+- - -
©)

ande; and f;,4 = 0,1,2,3,...,N are the complex coef-
ficients of E(s) and F(s)/eg, respectively. The y2:(s) and
y22(s) polynomias for single-terminated networks may be
found by a similar procedure [1].

Knowing the denominator and numerator polynomials
for y21(8) and yQQ(S), their residues 21k and 792k,
k= 1,2,..., N may be found with partial fraction ex-
pansions, and the purely real eigenvalues A; of the network
found by rooting the denominator polynomial y,(s) common
to both w21 (s) and y22(s), which has purely imaginary roots
= jAr (see[1, Appendix]). Expressing the residues in matrix
form yields the following equation for the admittance matrix
[Y] for the overall network:

_ 911(3) 912(8)
[YN] B le(s) U22(8)]
_ 1 y11n(8)  y12n(s)
ya(s) ya1n(s)  w22n(s)
1 0 Ko N 1 Tiitk  T12k
_‘I[Ko 0 ] +; (s— M) |j’21k 7’221;| ©

where the real constant Ky = 0, except for the fully canonical
case where the number of finite-position TZsng, inthefiltering
function is equal to the filter degree V. In this case, the degree
of the numerator of y21(s) (yo1n(s),= jP(s)/e) isequa to
its denominator y,4(s), and K has to be extracted from 1 (s)
(=y12(s)) first to reduce the degree of its numerator polynomial
y21.(s) by onebeforeitsresidues 21 may befound. Note that,
inthefully canonical case, wheretheinteger quantity N —ng, =
0 iseven, itisnecessary to multiply P(s) by j to ensurethat the
unitary conditions for the scattering matrix are satisfied.

Being independent of s, Ky may be evaluated at s = joo as
follows:
_ JP(s)/e . @

_ 2121n(8)

Yya(s)

JKo

s=joo

The process for building up ¥, [see (5)] results in its highest

degree coefficient having a value of 1 4+ 1/er and, since the

highest degree coefficient of P(s) = 1, thevalue of Ky may be
found as follows:

1 1 ER 1

Ky=>2 ——" == . 8

O e (1+1/er) e (er+1) ®

Thenew numerator polynomial 5, (s) may now be determined

as follows:

Ya1,(8) = yo1n(s) — 7 Kowa(s) )

whichwill be of degree N —1, and theresidues 1, of 45, (s) =
Yh1n(5)/ya(s) may now be found as normal.

B. Synthesis of Admittance Function Y |—Circuit Approach

The two-port short-circuit admittance parameter matrix
[Yn] for the overall network may aso be synthesized directly
from the fully canonical transversal network, the general form
of which is shown in Fig. 1(a). It comprises a series of NV
individual first-degree low-pass sections, connected in parallel
between the source and |oad terminations, but not to each other.
The direct source-load coupling inverter Msgr, is included to
dlow fully canonical transfer functions to be realized, ac-
cording to the “minimum path” rule, i.e., ng, max, the maximum
number of finite position TZs that may be realized by the
network = N — npin, Where no,;, 1S the number of resonators
in the shortest route through the network between the source
and load terminations. In fully canonical networks n,,;, = 0
and, thus, 7 ¢ max = IV, the degree of the network.

Each of the V low-pass sections comprises one parallel-con-
nected capacitor Cj, and onefrequency invariant susceptance By,
connected through admittance inverters of characteristic admit-
tances Ms;, and M7, tothesourceand|oad terminations, respec-
tively. Thecircuit of thekthlow-passsectionisshowninFig. 1(b).

Fully Canonical Filtering Functions

The direct source-load inverter Mgy, in Fig. 1(a) is zero ex-
cept for fully canonical filtering functions, where the number of
finite-position zeros equals the degree of the filter. At infinite
frequency (s = +jo0), al the capacitors C;, become paralléel
short circuits, which appear as open circuits at the source-oad
ports through the inverters Ms; and M ;.. Thus, the only path
between source and load is via the frequency-invariant admit-
tance inverter Ms;..

If the load impedance is 1 €2, the driving point admittance
Yi1.. l0OKing in at the input port will be (Fig. 3)

Yiieo = MSQL
Therefore, the input reflection coefficient S11(s) at s = joo is
(1 - Yiloo)
S oo = |S1100] = o210 10
11(8)]s=joo = [S1100| (1T Vi1o0) (10)

Substituting for |S11.0] in the conservation of energy equation
using (10)

[S2100] = V1 — |S1100)?

_ 2v/ Y1100 _ 2Mgr,
(1 + Yiloo) (]_ + MSQT)
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MSL R, =1Q

Fig. 3. Equivaent circuit of transversal array at s = £j00.

=M. 2

1l SL

Solving for Mgy,

14 /T |501e]?  14[S1100]

[52100[ [52100[ '

Atinfinitefrequency |S2: (joo)| = (P(joo)/e)/E(joo) = 1/e
because, for a fully canonical filtering function, P and
E will both be Nth-degree polynomials with their
highest degree coefficients normalized to unity. Similarly,
|S11(Joo)| = (F(joo)/er)/E(joo) = 1/eg. Therefore,

Mg1, =

+1
Mgr, = M_
€R
Since eg isdightly greater than unity for afully canonical net-
work, choosing the negative sign will give a relatively small
value for Msr,

eler— 1)
€R

Msy = (11)
and correctly gives Msp, = 0 for noncanonical filters, where
er = 1.1t can be shown that the positive sign will give asecond
solution MY, = 1/Msy,, but since this will be a large number,
it is never used in practice [8].

Synthesis of Two-Port Admittance Matrix [Yv]

Cascading the elementsin Fig. 1(b) givesan ABC D transfer
matrix for the kth “low-pass resonator” as follows:

My (sCr + jBr)
[ABCD]y = — Msi  MsiMps (12)
0 M,
Mpx

which may then be directly converted into the equivalent short-
circuit y-parameter matrix

yr(s)  yiae(s)
[yx] =
y21k(8) y22k(5)
[ Mgy 1
= MsMux | Mg
(sCx + 1Bs) ;M
L M,
1 [ M2,  MsiMyy
= - . (13)
(sCx +3Br) | MspMpy M7,

The two-port short-circuit admittance matrix [Yy] for the par-
allel-connected transverse array is the sum of the y-parameter
matricesfor the IV individual sections, plusthe y-parameter ma-

trix [ysy.] for the direct source-oad coupling inverter Mgy,

y12(3)}

2122(8)

y11(s)
yo1(s)
]+ zj\: |:y11k(3)
s 1 Yo1x(8)
[ 0 Msy
- |:MSL 0
M3,
' |:MSkMLk

[Yn] = [
Y12k(5) }

yQQk(S)

1
} * Z (sCx + jBx)

k=1
MSkMLk:|

(14)
M,

C. Yynthesis of the V + 2 Transversal Matrix

Now the two expressions for [Yy], the first in terms of the
residues of the transfer function (6), and the second in terms
of the circuit elements of the transversal array (14), may be
equated. It may be seen immediately that Ads;, = Ko, and for
the “21" and “22" elements in the matrices in the right-hand
sides of (6) and (14)

721k M My
- = - 154)
(s—Jjxx) (sCx +jBg) (153
T2k M3,
- = - . 15b
(s —j )  (sCy+jBy) (150)

Theresidues ro1; and 223, and the eigenvalues A;, have already
been derived from the S»; and S2» polynomials of the desired
filtering function [see (5)] and, thus, by equating the real and
imaginary partsin (15a) and (15b), it becomes possible to relate
them directly to the circuit parameters

M3, =roon and Msp My, = 71

Mpy =+/r22k = Tk
and
Msy =7ra11 /v/r225 = Tins k=1,2,...,N.

(16)

It may be recognized at this stage that M s, and M. constitute
the unscaled row vectors 77, and Z'n. of the orthogonal matrix
[T}, as defined in [1, Appendix].

Since the capacitors Cj of the paralel networks are all
unity, and the frequency-invariant susceptances By (=—Ax,
representing the self couplings M;; — Mpyy), the input
couplings Msy, the output couplings My, and the direct
source-oad coupling Mgy, are @l now known, the reciprocal
N + 2 transversal coupling matrix [M] representing the
network in Fig. 1(a) may now be constructed. Ms;, (=171x) are
the IV input couplings and occupy the first row and column of
the matrix from positions 1 to NV (see Fig. 2). Similarly, My,
(=T'ni) are the NV output couplings and they occupy the last
row and column of [M] from positions1to . All other entries
are zero. M2, and M}, are equivalent to the terminating
impedances R; and Ry, respectively, in[1].
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S 1.2 3 4 5 L

Possible non-zero couplings:

S m xa
1].]|s|m Xa|Xs s - self coupling
2 s |mlxalxs m - main line coupling
Xa - asymmetric cross-coupling
3 S |m xs - symmetric cross-coupling
4 s |m - couplings are symumetric about
5 s lm the principal diagonal
L All unspecified matrix entries are zero.
S 1 2 3
O .- A Q source/load terminals
: [ ] resonator node
: main line coupling
O ® R cross coupling
L 5 4

(b)

Fig. 4. Folded canonical network coupling matrix form—fifth-degree
example. (a) Folded coupling matrix form. “s” and “xza” couplings are zero for
symmetric characteristics. (b) Coupling and routing schematic.

Reduction of the NV + 2 Transversal Matrix to the Folded
Canonical Form

With N input and output couplings, the transversal topology
isclearly impractical torealizefor most casesand must betrans-
formed to amore suitable topology if it isto be of practical use.
A more convenient form is the folded or “reflex” configuration
[9], which may be realized directly or used as the starting point
for further transformations to other topol ogies more suitable for
the technology it is intended to use for the construction of the
filter.

Toreducethetransversal matrix to thefolded form, theformal
procedure, as described in [1], may be applied, working on the
N +2 matrix instead of the N x N coupling matrix. This proce-
dure involves applying a series of similarity transforms (*rota-
tions"), which eliminate unwanted coupling matrix entries alter-
nately right to left along rows and top to bottom down columns,
starting with the outermost rows and columns and working in-
wards toward the center of the matrix, until the only remaining
couplings are those that can be realized by filter resonatorsin a
folded structure (Fig. 4)

Aswiththe V x N matrix, no specia action needsto betaken
to eliminate unneeded “ za” and “zs” couplingsin the cross-di-
agonals—they will automatically become zero if they are not
required to realize the particular filter characteristic under con-
sideration.

[llustrative Example

Toillustratethe N +2 matrix synthesis procedure, an example
istaken of afully canonical fourth-degree asymmetric filtering
function with 22-dB return loss and four TZs, two at —3j3.7431
and —51.8051, which produce two attenuation lobes of 30 dB
each on the lower side of the passband, and two at +71.5699
and +56.1910, producing alobe of 20 dB on the upper side.

Applying the recursive technique of [1, Sec. 1] yields the
coefficients for the numerator and denominator polynomials of
511(8) and 521(8)

521(8) =

and these are shown in Table |. Being fully canonical, eg # 1
and may be found from (2). Note that, because N — np, = 0
and is, therefore, an even number, the coefficients of P(s) have
been multiplied by 5 in Tablell.

Now the numerator and denominator polynomials of
Y21(5)(=ya1n(5) /ya(s)) A 1122 (5)(=y22n(5)/yal’s)) May be
constructed using (5). The coefficients of yu(s), y22,(s), and
y21n(s), Normalized to the highest degree coefficient of y4(s),
are summarized in Table I1.

The next step is to find the residues of 91 (s) and yo2(s)
with partial fraction expansions. Since the numerator of 422(s)
(422,,(s)) is one less in degree than its denominator y4(s),
finding the associated residues r12;, is straightforward. How-
ever, the degree of the numerator of yo21(s) (y21,(s)) is the
same as its denominator y,(s), and the factor Ky (=Msy.) has
to be extracted first to reduce y21,,(s) in degree by one.

This is easily accomplished by first finding Mgy, by evalu-
aing y21(s) a s = joo, i.e, Mgy, equalstheratio of the highest
degree coefficients in the numerator and denominator polyno-
mials of y21(s) [see (7) and (8)] asfollows:

y21n(8)
Ya(s)

JMsL = y21(5)|s=joo = = 50.01509

s=j00
which may be seen is the highest degree coefficient of y21,,(s)
in Tablell. Alternatively, Msr, may be derived from (11).

Msr, may now be extracted from the numerator of 21 (s) [see
(9)] asfollows:

yéln(s) = y21n(s) — FMsrya(s).

At thisstage, y5,,,(s) will be one degreelessthan y,(s) and the
residues 121 may be found as normal. The residues, the eigen-
values )i, [where j A, aretherootsof y,(s)], and the associated
eigenvectors 77 and Ty arelisted in Table l11.

Notethat, for double-terminated lossl ess networks with equal
source and load terminations, 7225 Will be positive real for a
realizable network, and [7’21k[ = [7’221@‘[-

Now knowing the values of the eigenvalues A, the eigenvec-
tors 71 and TNy, and Mgy, the NV + 2 transversal coupling
matrix (Fig. 2) may be completed as shown in Fig. 5.

Using the same reduction process as described in [1], but op-
erating upon the N + 2 matrix, the transversal matrix may be
reduced to the folded form with a series of six rotations, anni-
hilating the elements Mgy, Mgs, Msa, Mar, M3y, and finally
M3 inorder (see Table 1V). Theresulting folded configuration
coupling matrix isshownin Fig. 6(a), and its corresponding cou-
pling and routing schematic is shown in Fig. 6(b).

The analysis of this coupling matrix is shown in Fig. 7. It
may be seen that the return loss and rejection characteristics are
unchanged from those obtained from the analysis of the original
Si1 and S,y polynomials.

I1l. TRANSFORMATIONS OF THE COUPLING MATRIX

A microwave filter may be realized directly from the folded
coupling matrix, thetopology and strengths of itsinter-resonator
couplings directly corresponding to the nonzero elements of the
coupling matrix. However, it is sometimes necessary to apply
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TABLE |

44 FILTERING FUNCTION—COEFFICIENTS OF E(s), F'(s) AND P(s) POLYNOMIALS

Coefficients of S;; and S, Coefficients of §;; Numerator Coefficients of S,; Numerator
s Denominator Polynomial Polynomial F(s) Polynomial P(s)
E(s) * @)

i (e)

0 1.9877 - j0.0025 0.1580 j65.6671
1 +3.2898 —j0.0489 -0.0009 +1.4870
2 +3.6063 —j0.0031 +1.0615 +26.5826
3 +2.2467 — j0.0047 —j0.0026 +2.2128
4 +1.0 +1.0 +j1.0

eg = 1.000456 € = 33.140652

TABLE I
4—4 FILTERING FUNCTION—COEFFICIENTS OF NUMERATOR AND DENOMINATOR POLYNOMIALS OF 3/21(5) AND 3/22(5)
) Coefficients of Denominator Coefficients of Numerator Coefficients of Numerator
s Polynomial of yx(s)and Polynomial of yz(s) Polynomial of y;(s)
yZl(S) (y22n(5) ) ( yZln(S) )

i (yas))

0 1.0730 —j0.0012 j0.9910

1 —j0.0249 +1.6453 +0.0224

2 +2.3342 —j0.0016 +50.4012

3 —j0.0036 +1.1236 +0.0334

4 +1.0 +j0.0151

TABLE Il
4-4 FILTERING FUNCTION—RESIDUES, EIGENVALUES, AND EIGENVECTORS
Eigenvalues Residues Eigenvectors
TNk le
k M T2 T2 = T = T /V T
1 -1.3142 0.1326 0.1326 0.3641 0.3641
2 -0.7831 0.4273 -0.4273 0.6537 -0.6537
3 0.8041 0.4459 0.4459 0.6677 0.6677
4 1.2968 0.1178 -0.1178 0.3433 —0.3433
S 1 2 3 4 L S 1 2 3 4 L
S 0 0.3641 -0.6537 0.6677 -0.3433 0.0151 S 0 1.0600 0 0 0 0.0151
1] 03641 1.3142 0 0 0 0.3641 1| 1.0600 -0.0023 0.8739 0 -0.3259 0.0315
2| —0.6537 0 0.7831 0 0 0.6537 2 0 0.8739 0.0483 0.8359 0.0342 0
3| 0.6677 0 0 -0.8041 0 0.6677 3 0 0 0.8359 -0.0668 0.8723 0
4| -0.3433 0 0 0 —1.2968 0.3433 4 0 -0.3259 0.0342 0.8723 0.0171 1.0595
L| 00151 0.3641 0.6537 0.6677 0.3433 0 L{ 0.0151 0.0315 0 0 1.0595 0
Fig. 5. Transversal coupling matrix for 4—4 fully canonical filtering function. @
The matrix is symmetric about the principal diagonal. S 1 2
o —® fe) source/load terminals
TABLE IV ] ) ® resonator node
FOURTH-DEGREE EXAMPLE—PIVOTS AND ANGLES OF THE SIMILARITY = : main line Céupling
TRANSFORM SEQUENCE FOR THE REDUCTION OF THE TRANSVERSAL o » —  ® cross coupling
MATRIX TO THE FOLDED CONFIGURATION. TOTAL NUMBER OF L 4 3

TRANSFORMS R = "= ' n = 6 o)

Transform | Pivot Element 0, tan" (M /M) Fig. 6. Fully canonical synthesis example. Folded coupling matrix for 44
Number [ 1 to be . " filtering function. (a) Coupling matrix. Matrix is symmetric about the principal
r Annihilated Fig. 5 k I [ m]n]c diagonal. (b) Coupling and routing schematic.
1 [3, 4] Mss in row ‘S’ S[T4]s]3]-
2 [2,3] Ms; S| 38| 2|
3 1,2 Mg, . sl|l2]s |1 ]|= " . .
2 {27 3} e T T T T Here, two novel realizations are introduced; parallel-con-
5 (3, 4] My . 3| L |4l |+ nected two-port networks and the “cul-de-sac” configuration.
6 [2,3] M, in row 1 1 [ 3] 1 [ 274

The first may be derived by grouping residues and forming
separate two-port subnetworks, which are then connected in
parallel between the source and load terminations. The second
is formed by a series of similarity transforms operating upon
the folded coupling matrix.

a further series of rotations to the matrix, to transform it into
a form more convenient or more practical to the application in
hand, e.g., [10]{12].
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Fig. 7. 4-4 fully canonica synthesis example: analysis of folded coupling
matrix. Rejectionas s — +joo = 201og,,(¢) = 30.407 dB.

A. Parallel-Connected Two-Port Networks

Being closely related to short-circuit admittance parameters,
the eigenvalues and corresponding residues of thefiltering func-
tion may be separated into groups and subnetworks constructed
from them using the same procedures as described above. The
subnetworks may then be connected in parallel between the
source and load terminations to recover the origina filtering
characteristics. The transverse array itself may be regarded as
aparallel connection of N single-resonator “groups.”

Although the choice of residue groupings is arbitrary, it
will be found that difficult-to-realize couplings will be created
within the subnetworks, and between the internal nodes of the
subnetworks and the source-load terminations if the choice
of filtering function and of residue groupings is not restricted.
The restrictions are: 1) filtering functions may be fully canon-
ical, but must be symmetric and even degree and 2) residue
groups must consist of complementary pairs of residues and
eigenvalues, i.e,, if the residues with indexes ¢« and j (722,
ro1; and 725, 721,) Constitute a group or are part of a group,
then r90; = 7225 and r91; = —T215- This |mp||e£ that only
networks double-terminated between equal-value source and
load terminations can be synthesized.

If these restrictions are observed, the overall network will
consist of a number of two-port networks, the number corre-
sponding to the number of groups that the residues have been
divided into, each connected in parallel between the source and
load terminals. If thefiltering function isfully canonical, the di-
rect source-oad coupling Mgy, will aso be present.

Once the residues have been divided into groups, the syn-
thesis of the sub-matrices and their reduction to the folded form
follows exactly the same process as for asingle network, as de-
scribed in Section |1, working on each subnetwork individualy.
To illustrate the process, an example is taken of a 23-dB return
loss sixth-degree characteristic, with two symmetrically placed
TZs at +51.3958 producing lobes of 25 dB on either side of
the passband, and a pair of real-axis zeros at +1.0749 to give
group-delay equalization over approximately 50% of the pass-
band. Thisfilter will be synthesized as two subnetworks, one of
degree 2 and one of degree 4.

Following the procedure of Section Il results in a set of
residues and eigenvalues for the characteristic as shown in
Table V.

Grouping residues £ = 1 and 6 yields the folded matrix for
the second-degree subnetwork shown in Fig. 8. Now grouping
residuesk = 2, 3,4, and 5 yields the folded coupling matrix for
the fourth-degree subnetwork shown in Fig. 9.

Superimposing the two matrices yields the overall matrix
shown in Fig. 10.

The results of analyzing the overall coupling matrix are
showninFig. 11(a) (rejection/return loss) and Fig. 11(b) (group
delay), which show that the 25-dB |obe level and equalized
in-band group delay have been preserved.

Other solutions for this topology are available depending on
the combinations of residues that are chosen for the subnet-
works. However, whatever combination is chosen, at least one
of the input/output couplings will be negative. Of course, the
number of topology options increases as the degree of the fil-
tering function increases, for example, atenth-degree filter may
be realized as two parallel-connected two-port networks, one
fourth degree and one sixth degree, or as three networks, one
second degree and two fourth degree, all connected in parallel
between the source and load terminations. Also, each subnet-
work itself may reconfigured to other two-port topologies with
further transformations, if feasible.

If the network is to be synthesized as N/2 parallel-coupled
pairs (see Fig. 12 for a sixth-degree example), arather more di-
rect synthesisroute exists. Starting with thetransversal matrix, it
isonly necessary to apply a series of rotations to annihilate half
thecouplingsinthetoprow frompositions M, x back tothemid-
point of thisrow Mg, n/241,i.€., N/2 rotations (seeFig. 2). Due
tothesymmetry of thevaluesintheouter rowsand columnsof the
transversal matrix, the corresponding entries My 7, to My 2 r,in
thelast column will be annihilated simultaneously.

The pivots of the rotations to annihilate these couplings start
at position [1, N] and progress toward the center of the matrix
until position [N/2, N/2 + 1]. For the sixth-degree example,
thisis a sequence of N/2 = 3 rotations according to Table VI
and applied to the transversal matrix:

After the series of rotations, the matrix, as shown in
Fig. 12(a), is obtained, which corresponds to the coupling and
routing diagram in Fig. 12(b). In every case, at least one of the
input/output couplings will be negative. Aninteresting example
of afourth-degree implementation of this topology realized in
dielectric resonator technology is given in [13].

B. “ Cul-de-Sac” Configurations

The "cul-de-sac”" configuration [14] is restricted to double-
terminated networks and will realize amaximum of N —3 TZs.
Otherwise it will accommodate even- or odd-degree symmetric
or asymmetric prototypes. It has an important advantage over
other configurations in that, whatever the prototype filtering
function, there will be only one negative coupling in the en-
tire network and there will be no “diagonal” cross-couplings,
which are sometimes awkward to realize in practice. Moreover,
itsform lendsitself to acertain amount of flexibility in the phys-
ical layout of its resonators.

A typical "cul-de-sac" configurationisshownin Fig. 13(a) for
atenth-degree prototype with the maximum-all owable seven Tx
zeros (inthiscase, threeimaginary-axisand two complex pairs).
There is a central “core” of a quartet of resonators in a square
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TABLE V
6-2-2 SYMMETRIC FILTERING FUNCTION—RESIDUES, EIGENVALUES, AND EIGENVECTORS

Eigenvalues Residues Eigenvectors
Toe Ty
k e T2 Tou = AT = rzlk/\/rzzk
1 ~1.2225 0.0975 -0.0975 0.3122 -0.3122
2 ~1.0648 0.2365 0.2365 0.4863 0.4863
3 -0.3719 0.2262 -0.2262 0.4756 ~0.4756
4 0.3719 0.2262 0.2262 0.4756 0.4756
5 1.0648 0.2365 -0.2365 0.4863 —0.4863
6 1.2225 0.0975 0.0975 0.3122 0.3122
S 1 6 L 0T ‘
S 0 0.4415 0 0 g | , | x
1| 04415 0 1.2225 0 S o [ pok2 Frotope: ;
6 0 1.2225 0 0.4415 B o Nemmee®
L 0 0 0.4415 0 = [ T
Z 20 :
? : AN
S O\.—‘/O - 2 30 Pl [
> C
Z [
1 6 = / \I V \
S a0
(b) 20 '
Fig. 8. Coupling sub-matrix and coupling/routing diagram for residuesk = 1 & s0 3 L : ' o
and 6. (a) Coupling matrix. (b) Coupling and routing diagram. '
(a) Coupling (b) Coupling g diag 4 3 2 1 0 1 3 4
s 2 3 4 5 L FREQUENCY (rad/sec)
S 0 0.9619 0 0 0 0 [€)
2| 09619 0 0.7182 0 0.3624 0 12
3 0 0.7182 0 0.3305 0 0
4 0 0 0.3305 0 0.7182 0
5 0 0.3624 0 0.7182 0 -0.9619
L 0 0 0 [ -0.9619 0 —
gs
P
3
=)
a
5
4
: \
=
(b) 0
Fig. 9. Coupling sub-matrix and coupling/routing diagram for residue group 2 15 1 ;):E UE NOC v d/o.s 15 2
k =2,3,4, and 5. (@) Coupling matrix. (b) Coupling and routing diagram. Q (rad/sec)
(b)
s 1 2 3 4 5 6 L Fig. 11. Andysis of paralel-connected two-port coupling matrix.
S 0 04415 0.9619 0 0 0 0 0 (a) Rejection and return loss. (b) Group delay.
1| 04415 0 0 0 0 0 12225 0
2| 09619 0 0 0.7182 0 0.3624 0 0
3 0 0 0.7182 0 03305 0 0 0
4 0 0 0 0.3305 0 0.7182 0 0 S 1 2 3 4 5 6 L
5 0 0 0.3624 0 0.7182 0 0 -0.9619 S 0 04415 06877 06726 0 0 0 0
6 0 1.2225 0 0 0 0 0 0.4415 1| 04415 0 0 0 0 0 1.2225 0
L 0 0 0 0 0 -0.9619 __ 0.4415 0 2| 0.6877 0 0 0 0 1.0648 0 0
3| 06726 0 0 0 03720 0 0 0
4 0 0 0 03720 0 0 0 0.6726
5 0 0 1.0648 0 0 0 0 ~0.6877
6 0 1.2225 0 0 0 0 0 0.4415
L 0 0 0 0 0.6726  -0.6877  0.4415 0
@
3 4
S L
(b)
Fig. 10. Superimposed second- and fourth-degree sub-matrices. (a) Coupling
matrix. (b) Coupling and routing diagram. : ¢
(b)

formation[1, 2, 9, and 10in Fig. 13(a)], straight-coupled to each

! ' A X Fig. 12. Symmetric 6-4 filter example—realized as parallel-coupled pairs.
other (i.e., nodiagonal cross-couplings). One of these couplings

(a) Coupling matrix. (b) Coupling and routing diagram.
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TABLE VI
SIXTH-DEGREE EXAMPLE—SIMILARITY TRANSFORM SEQUENCE FOR THE
REDUCTION OF THE TRANSVERSAL MATRIX TO THE PARALLEL-COUPLED
PAIRS FORMAT

Transform | Pivot Elements 8= tan" (M, /M ,,)
Number [& 7] to be ’ "
r Annihilated k l m n c
1 [6] [ Mg (adMy) [ S | 6 S [ 1]
2 5] [ Mss@d M) | S| 5 (S| 2]~
3 3,4 | Mgy (and Ms) | S | 4 | S [ 3 |~
1 9 8 7 6
SO - . . °
® 4 OL
5 4 3 2 10
@
4 3 7 8
® — ° O L
SO * —e
1 2 6 5
(b)
3 2 7
[ - OL
e ® .
1 6 5 4
(©
Fig. 13. “Cul-de-sac” network configurations. (a) 10-3-4 network. (b) 8-3

network. (c) 7-1-2 network.

is always negative; the choice of which one is arbitrary. The
entry to and exit from the core quartet are from opposite corners
of the square [1 and 10, respectively, in Fig. 13(a)]-

Some or all of therest of the resonators are strung out in cas-
cadefrom the other two cornersof the core quartet in equal num-
bers (even-degree prototypes) or one more than the other (odd-
degree prototypes). The last resonator in each of the two chains
has no output coupling, hence, the nomenclature “cul-de-sac”
for this configuration. Other possible configurations are shown
in Fig. 13(b) (eighth degree) and Fig. 13(c) (seventh degree).

C. Yynthesis of the “ Cul-de-Sac” Network

Fortunately, the synthesis of the "cul-de-sac" network isvery
simple and is entirely automatic. Starting with the folded cou-
pling matrix, elements are annihilated using a series of regular
similarity transforms (for odd-degree filters), and “ cross-pivot”
transforms (for even-degreefilters), beginning with amain line
coupling near the center of the matrix, and working outwards
along or paralel to the antidiagonal. This gives a maximum of
(N —2)/2transformsfor even-degree prototypesand (N —3)/2
for odd-degree prototypes.

The“cross-pivot” similarity transform for even-degreefilters
is one where the coordinates of the element to be eliminated are
the same as the pivot of the transform, i.e., the element to be
annihilated lies on the cross-points of the pivot. The angle for
the annihilation of an element at the cross-point is different to
that of aregular annihilation and is given by

1 QMU kw

L My T
=gt {(MJJ—M%J T2

17)

TABLE VII
PivoT COORDINATES FOR THE REDUCTION OF THE [N + 2 FOLDED MATRIX
TO THE “CuUL-DE-SAC” CONFIGURATION

Pivot Position [/, j] and Element to be Annihilated
Degree Similarity transform number r Transform
r=123,..,R R =(N-2)/2 (Neven) Angle
=(N-3)/2 (N odd)
N r=1 2 3 r 6,
4 [23] My eq(17)
5 [2,4] My eq(18)
6 [3:4] Mz [2.5] M eq(17)
7 [3.5] M [2,6] M eq(18)
8 [4.5] My [3.6] My [2,7] Mz eq(17)
9 [4.6] M. [3.7] My [2,8] My eq(18)
Neven) | [bj] My j] M, eq(17)
i=(N+2)2-1; i=(N+2)2—r
j=N2+1 j=N2+r
N (odd) [L]] My - - [L7] M eq(18)
i=(N+1)2-1 i=(N+1)2-r
j=(N+1y2+1 J=(N+ D2 +r
S 1 2 3 4 S 6 7 L
S 0 1.0572 ] 0 0 0 0 0 0
1] 1.0572 0.0211 0.8884 0 0 0 0 0 0
2 0 0.8884  0.0258  0.6159 0 0 0.0941 0 0
3 0 0 0.6159 0.0193 0.5101 0.1878 0.0700 0 0
4 0 0 o 05101 -04856 04551 4] 0 0
5 0 0 0 0.1878 0.4551  -0.0237  0.6119 0 0
6 0 0 0.0941 0.0700 1] 0.6119 0.0258 0.8884 0
7 0 0 0 0 1] 0 0.8884 0.0211 1.0572
L 0 0 0 0 0 9 0 1.0572 Q
@
S 1 2 3 4 S 6 7 L
S 0 1.0572 4] Q 0 0 0 0 0
1 1.0572 0.0211 0.6282 0 0 0 0.6282 0 0
2 0 0.6282 -0.0683 0.5798 0 0 0 -0.6282 0
3 0 0 05798  -0.1912 Q 0 0 Q 0
4 0 0 0 0 —0.4856  0.6836 Q 0 0
5 0 0 4] 0 0.6836 0.1869 0.6499 4] 0
6 0 0.6282 0 ) 0 0.6499 0.1199 0.6282 0
7 0 0 —0.6282 0 0 0 0.6282 0.0211 1.0572
L 0 0 0 0 0 a 0 1.0572 0
(b)
Fig. 14. “Cul-de-sac” configuration—seventh-degree example. (a) Original

folded coupling matrix. (b) After transformation to “cul-de-sac” configuration.

where ¢, j are the coordinates of the pivot and also of the ele-
ment to be annihilated, #,. is the angle of the similarity trans-
form, and k& isan arbitrary integer. Note that, for cross-pivot an-
nihilations of M;; (0), where the self-couplings M,; = M,;,
6, = +x /4. Itisaso alowable to have 6, = £x /4 for when
M;; = 0,whichwill giveaslightly different configuration alter-
native. For odd-degree filters, the angle formula takes the more
conventional form

9,, = tan‘l (Mi7j_1 /Mj_17j ) (18)

Table VII gives the pivot coordinates and angle formula to
be used for the sequence of similarity transforms to be applied
to the folded coupling matrix for degrees 4-9, and a genera
formulafor the pivot coordinates for any degree >4.

An example is made of the double-terminated version of the
seventh-degree prototype that was used in [1]. This character-
istic had 23-dB returnloss, aTZ at +51.2576 to give arejection
lobelevel of 30 dB on the upper side of the passband, and acom-
plex pair of Tx zerosat +0.9218 — j0.1546 to give group-delay
equalization over approximately 60% of the passband.

After following the procedure of Section I, the N + 2 folded
matrix shown in Fig. 14(a) is obtained. Applying a series of
two similarity transforms at pivots [3, 5] and [2, 6] (Table VII)
with angles according to (18) results in the coupling matrix of
Fig. 14(b). The corresponding coupling and routing diagram is
given in Fig. 13(c).
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Fig. 15. Seventh-degree "cul-de-sac" synthesis example—analysis of folded
coupling matrix. (a) Rejection and return loss. (b) Group delay.

The results of analyzing this coupling matrix are presented in
Fig. 15, confirming that the rgjection lobelevel and group-delay
equalization performances have been preserved intact.

Aswas noted above, al the couplings are positive, except for
one in the core quartet. This may be moved to any one of the
four couplingsfor the greatest convenience and implemented as
aprobe, for example, if thefilter isto berealized in coaxial-res-
onator technology wherethe other couplings areinductiveirises
or inductive loops. Also, there are no diagona couplings even
though the origina prototype was asymmetric. If it is feasible
to implement a diagonal coupling between the input and output
of the core quartet, then an extra TZ may be realized, bringing
the maximum number realizable by thistopology to NV — 2. This
coupling in the "cul-de-sac" core will have the samevalueasin
the folded coupling matrix.

IV. CONCLUSIONS

Inthis paper, asimple and general method for the synthesis of
the “ N 4 2" coupling matrix in the folded cross-coupled array
configuration has been presented. The N + 2 coupling matrix is
applicableto symmetric or asymmetric, single- or double-termi-
nated, and even- or odd-degree filtering functions, and will ac-
commodate the fully canonical and multiple-input/output cou-
pling configurations.

The N + 2 folded coupling matrix may be used directly for
the design of a microwave filter if it is convenient to do so, or
used asthe starting point for the application of afurther series of
similarity transformsto reconfigureit into atopology more con-
venient for the technology or production process it is intended

to employ. Two examples of such reconfigurations are included
in the paper: the parallel-coupled two-port network configura-
tion and the “cul-de-sac” filter configuration. The latter fea
tures some important constructional simplifications that should
ease the volume production process for high-performance mi-
crowave filters for the wireless industry.
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