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Abstract—A general method is presented for the synthesis of
the folded-configuration coupling matrix for Chebyshev or other
filtering functions of the most general kind, including the fully
canonical case, i.e., prescribed finite-position transmission
zeros in an th-degree network. The method is based on the
“ + 2” transversal network coupling matrix, which is able
to accommodate multiple input/output couplings, as well as the
direct source–load coupling needed for the fully canonical cases.
Firstly, the direct method for building up the coupling matrix for
the transversal network is described. A simple nonoptimization
process is then outlined for the conversion of the transversal
matrix to the equivalent “ + 2” folded-configuration coupling
matrix. The folded matrix may be used directly to realize mi-
crowave bandpass filters in a variety of technologies, but some
of these could require awkward-to-realize cross-couplings. This
paper concludes with a description of two simple procedures
for transforming the transversal and folded matrices into two
novel network configurations, which enable the realization of ad-
vanced microwave bandpass filters without the need for complex
inter-resonator coupling elements.

Index Terms—Asymmetric filtering functions, Chebyshev
characteristics, circuit synthesis methods, coupling matrix,
microwave filters, transversal network.

I. INTRODUCTION

I N [1], a recursive method for deriving the transfer and
reflection polynomials for Chebyshev filtering functions

with prescribed finite-position transmission zeros (TZs) was
presented. This was followed by the synthesis methods for
the corresponding “ ” coupling matrix, ready for the
realization of a microwave filter with resonators arranged as
a folded cross-coupled array. It was mentioned in [1] that,
although the polynomial synthesis procedure was capable
of generating TZs for an th-degree network (i.e., fully
canonical), that a maximum of only finite-position
zeros could be realized by the coupling matrix. This
excluded some useful filtering characteristics, including those
that require multiple input/output couplings, which have been
finding applications recently [3].

In this paper, a method is presented for the synthesis of the
fully-canonical or “ ” folded coupling matrix, which over-
comes some of the shortcomings of the conventional
coupling matrix. The or “extended” coupling matrix has
an extra pair of rows top and bottom and an extra pair of columns
left and right surrounding the “core” coupling matrix,
which carry the input and output couplings from the source and
load terminations to resonator nodes in the core matrix.
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Fig. 1. Canonical transversal array. (a) N—resonator transversal array
including direct source–load coupling M . (b) Equivalent circuit of the kth
“low-pass resonator” in the transversal array.

The matrix has the following advantages, as compared
with the conventional coupling matrix.

• Multiple input/output couplings may be accommodated,
i.e., couplings may be made directly from the source
and/or to the load to internal resonators, in addition to the
main input/output couplings to the first and last resonator
in the filter circuit.

• Fully canonical filtering functions (i.e., th-degree char-
acteristics with finite-position TZs) may be synthe-
sized.

• During certain synthesis procedures that employ a
sequence of similarity transforms (rotations), it is some-
times convenient to temporarily “park” couplings in the
outer rows or columns, whilst other rotations are carried
out elsewhere in the matrix.

The paper begins by detailing the procedure for synthesizing
the coupling matrix from the transversal array circuit rep-
resentation of the filtering function (see Figs. 1(a) and 2), which
follows on from the methods originally established in [4]–[7]
and later extended in [1]. The new method is actually simpler to
derive than those used to synthesize the coupling matrix,
not requiring the Gram–Schmidt orthonormalization stage. The
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Fig. 2. N + 2 fully canonical coupling matrix [M] for the transversal array.
The “core” N � N matrix is indicated within the double lines. The matrix is
symmetric about the principal diagonal, i.e.,M = M .

reduction of the transversal coupling matrix to the folded
cross-coupled array coupling matrix is then outlined, following
much the same procedure as in [1]. A demonstration of the use
of the techniques to synthesize the coupling matrix for a fully
canonical filtering function is included.

Finally, the direct synthesis of two novel filter configurations
are presented; one starting with the transversal coupling matrix
and the second based on the folded coupling matrix. Both are ap-
plicable to the design of microwave bandpass filters in a variety
of technologies, but the second, in particular, has some impor-
tant implementation advantages that should considerably ease
the design and production of high-performance filters for space
or terrestrial communications systems.

II. SYNTHESIS OF THE “ ” TRANSVERSAL

COUPLING MATRIX

The approach that will be employed to synthesize the
transversal coupling matrix will be to construct the two-port
short-circuit admittance parameter matrix for the overall
network in two ways; the first from the coefficients of the ra-
tional polynomials of the transfer and reflection scattering pa-
rameters and , which represent the characteristics
of the filter to be realized, and the second from the circuit el-
ements of the transversal array network. By equating the
matrices as derived by these two methods, the elements of the
coupling matrix associated with the transversal array network
may be related to the coefficients of the and poly-
nomials.

A. Synthesis of Admittance Function From the Transfer
and Reflection Polynomials

The transfer and reflection polynomials that are generated in
[1] for the general Chebyshev filtering function are in the form

(1)

where , is the
prescribed return loss in decibels, and it is assumed that the poly-
nomials , , and have been normalized to their
respective highest degree coefficients. Both and are

th-degree polynomials, is the degree of the filtering func-
tion, whilst , which contains the finite-position prescribed
TZs, is of degree , where is the number of finite-posi-
tion TZs that have been prescribed. For a realizable network,

must be .
is unity for all cases except for fully canonical filtering

functions, where all the TZs are prescribed at finite frequencies,
i.e., . In this case, the value of (in decibels) is
finite at infinite frequency, and if the highest degree coefficient
of the polynomials , , and are each normalized to
unity, will have a value slightly greater than unity as follows:

(2)

It is also important to ensure that the transfer and reflection vec-
tors are orthogonal in order to satisfy the unitary conditions for
the scattering matrix [8]

(3)

From (3), it may be shown (see [2, p. 177]) that the phases
, , and of the vectors , , and , respec-

tively, are related by the following:

(4)

where is an integer.
Equation (4) shows that the difference between the phase

of the vector, and the average of the phases of the and
vectors must be an odd multiple of rad. For this con-

dition to be satisfied at any value of the frequency variable ,
the TZs of must be positioned symmetrically about
the imaginary ( ) axis or upon the imaginary axis itself. Sim-
ilarly, the pattern of the zeros of must either be co-
incident with those of on the imaginary axis, or form
mirror-image pairs about the imaginary axis with corresponding
off-axis zeros of . In this way, the sum of the phases of the
individual vectors that make up the overall phases of the vectors

, , etc., will be multiples of rad.
Since , , and share a common denom-

inator polynomial , it is only necessary to consider their
numerator polynomials as far as (4) is concerned. The multiples
of rad referred to above therefore depend upon the number
of finite-position transmit (Tx) zeros for the numer-
ator polynomial , and the degree of the filtering func-
tion for the and numerator polynomials (
and , respectively). With this in mind, it follows that, for
the left-hand side of (4) to produce an odd multiple of rad,
the integer quantity must itself be odd. Thus, to ensure
orthogonality between the and vectors, i.e., is
an odd multiple of rad, it is necessary to multiply the
polynomial by whenever is an even integer.
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The numerator and denominator polynomials for the
and elements of may be built up directly from the
transfer and reflection polynomials for and [1].
For a double-terminated network with source and load termina-
tions of 1

and

for even

and

for odd

where

(5)

and and , are the complex coef-
ficients of and , respectively. The and

polynomials for single-terminated networks may be
found by a similar procedure [1].

Knowing the denominator and numerator polynomials
for and , their residues and ,

may be found with partial fraction ex-
pansions, and the purely real eigenvalues of the network
found by rooting the denominator polynomial common
to both and , which has purely imaginary roots

(see [1, Appendix]). Expressing the residues in matrix
form yields the following equation for the admittance matrix

for the overall network:

(6)

where the real constant , except for the fully canonical
case where the number of finite-position TZs in the filtering
function is equal to the filter degree . In this case, the degree
of the numerator of is equal to
its denominator , and has to be extracted from

first to reduce the degree of its numerator polynomial
by one before its residues may be found. Note that,

in the fully canonical case, where the integer quantity
is even, it is necessary to multiply by to ensure that the

unitary conditions for the scattering matrix are satisfied.
Being independent of , may be evaluated at as

follows:

(7)

The process for building up [see (5)] results in its highest
degree coefficient having a value of and, since the
highest degree coefficient of , the value of may be
found as follows:

(8)

The new numerator polynomial may now be determined
as follows:

(9)

which will be of degree , and the residues of
may now be found as normal.

B. Synthesis of Admittance Function —Circuit Approach

The two-port short-circuit admittance parameter matrix
for the overall network may also be synthesized directly

from the fully canonical transversal network, the general form
of which is shown in Fig. 1(a). It comprises a series of
individual first-degree low-pass sections, connected in parallel
between the source and load terminations, but not to each other.
The direct source–load coupling inverter is included to
allow fully canonical transfer functions to be realized, ac-
cording to the “minimum path” rule, i.e., , the maximum
number of finite position TZs that may be realized by the
network , where is the number of resonators
in the shortest route through the network between the source
and load terminations. In fully canonical networks
and, thus, , the degree of the network.

Each of the low-pass sections comprises one parallel-con-
nected capacitor and one frequency invariant susceptance ,
connected through admittance inverters of characteristic admit-
tances and to the source and load terminations, respec-
tively.Thecircuitof the th low-passsection is showninFig.1(b).

Fully Canonical Filtering Functions

The direct source–load inverter in Fig. 1(a) is zero ex-
cept for fully canonical filtering functions, where the number of
finite-position zeros equals the degree of the filter. At infinite
frequency ( ), all the capacitors become parallel
short circuits, which appear as open circuits at the source–load
ports through the inverters and . Thus, the only path
between source and load is via the frequency-invariant admit-
tance inverter .

If the load impedance is 1 , the driving point admittance
looking in at the input port will be (Fig. 3)

Therefore, the input reflection coefficient at is

(10)

Substituting for in the conservation of energy equation
using (10)
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Fig. 3. Equivalent circuit of transversal array at s = �j1.

Solving for

At infinite frequency
because, for a fully canonical filtering function, and

will both be th-degree polynomials with their
highest degree coefficients normalized to unity. Similarly,

. Therefore,

Since is slightly greater than unity for a fully canonical net-
work, choosing the negative sign will give a relatively small
value for

(11)

and correctly gives for noncanonical filters, where
. It can be shown that the positive sign will give a second

solution , but since this will be a large number,
it is never used in practice [8].

Synthesis of Two-Port Admittance Matrix

Cascading the elements in Fig. 1(b) gives an transfer
matrix for the th “low-pass resonator” as follows:

(12)

which may then be directly converted into the equivalent short-
circuit -parameter matrix

(13)

The two-port short-circuit admittance matrix for the par-
allel-connected transverse array is the sum of the -parameter
matrices for the individual sections, plus the -parameter ma-

trix for the direct source–load coupling inverter

(14)

C. Synthesis of the Transversal Matrix

Now the two expressions for , the first in terms of the
residues of the transfer function (6), and the second in terms
of the circuit elements of the transversal array (14), may be
equated. It may be seen immediately that , and for
the “21” and “22” elements in the matrices in the right-hand
sides of (6) and (14)

(15a)

(15b)

The residues and and the eigenvalues have already
been derived from the and polynomials of the desired
filtering function [see (5)] and, thus, by equating the real and
imaginary parts in (15a) and (15b), it becomes possible to relate
them directly to the circuit parameters

and

and

and

(16)

It may be recognized at this stage that and constitute
the unscaled row vectors and of the orthogonal matrix

, as defined in [1, Appendix].
Since the capacitors of the parallel networks are all

unity, and the frequency-invariant susceptances ( ,
representing the self couplings ), the input
couplings , the output couplings , and the direct
source–load coupling are all now known, the reciprocal

transversal coupling matrix representing the
network in Fig. 1(a) may now be constructed. ( ) are
the input couplings and occupy the first row and column of
the matrix from positions 1 to (see Fig. 2). Similarly,
( ) are the output couplings and they occupy the last
row and column of from positions 1 to . All other entries
are zero. and are equivalent to the terminating
impedances and , respectively, in [1].
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(a)

(b)

Fig. 4. Folded canonical network coupling matrix form—fifth-degree
example. (a) Folded coupling matrix form. “s” and “xa” couplings are zero for
symmetric characteristics. (b) Coupling and routing schematic.

Reduction of the Transversal Matrix to the Folded
Canonical Form

With input and output couplings, the transversal topology
is clearly impractical to realize for most cases and must be trans-
formed to a more suitable topology if it is to be of practical use.
A more convenient form is the folded or “reflex” configuration
[9], which may be realized directly or used as the starting point
for further transformations to other topologies more suitable for
the technology it is intended to use for the construction of the
filter.

To reduce the transversal matrix to the folded form, the formal
procedure, as described in [1], may be applied, working on the

matrix instead of the coupling matrix. This proce-
dure involves applying a series of similarity transforms (“rota-
tions”), which eliminate unwanted coupling matrix entries alter-
nately right to left along rows and top to bottom down columns,
starting with the outermost rows and columns and working in-
wards toward the center of the matrix, until the only remaining
couplings are those that can be realized by filter resonators in a
folded structure (Fig. 4)

As with the matrix, no special action needs to be taken
to eliminate unneeded “ ” and “ ” couplings in the cross-di-
agonals—they will automatically become zero if they are not
required to realize the particular filter characteristic under con-
sideration.

Illustrative Example

To illustrate the matrix synthesis procedure, an example
is taken of a fully canonical fourth-degree asymmetric filtering
function with 22-dB return loss and four TZs, two at
and , which produce two attenuation lobes of 30 dB
each on the lower side of the passband, and two at
and , producing a lobe of 20 dB on the upper side.

Applying the recursive technique of [1, Sec. II] yields the
coefficients for the numerator and denominator polynomials of

and

and these are shown in Table I. Being fully canonical,
and may be found from (2). Note that, because
and is, therefore, an even number, the coefficients of have
been multiplied by in Table I.

Now the numerator and denominator polynomials of
and may be

constructed using (5). The coefficients of , , and
, normalized to the highest degree coefficient of ,

are summarized in Table II.
The next step is to find the residues of and

with partial fraction expansions. Since the numerator of
is one less in degree than its denominator ,

finding the associated residues is straightforward. How-
ever, the degree of the numerator of is the
same as its denominator , and the factor has
to be extracted first to reduce in degree by one.

This is easily accomplished by first finding by evalu-
ating at , i.e., equals the ratio of the highest
degree coefficients in the numerator and denominator polyno-
mials of [see (7) and (8)] as follows:

which may be seen is the highest degree coefficient of
in Table II. Alternatively, may be derived from (11).

may now be extracted from the numerator of [see
(9)] as follows:

At this stage, will be one degree less than and the
residues may be found as normal. The residues, the eigen-
values [where are the roots of ], and the associated
eigenvectors and are listed in Table III.

Note that, for double-terminated lossless networks with equal
source and load terminations, will be positive real for a
realizable network, and .

Now knowing the values of the eigenvalues , the eigenvec-
tors and , and , the transversal coupling
matrix (Fig. 2) may be completed as shown in Fig. 5.

Using the same reduction process as described in [1], but op-
erating upon the matrix, the transversal matrix may be
reduced to the folded form with a series of six rotations, anni-
hilating the elements , , , , , and finally

in order (see Table IV). The resulting folded configuration
coupling matrix is shown in Fig. 6(a), and its corresponding cou-
pling and routing schematic is shown in Fig. 6(b).

The analysis of this coupling matrix is shown in Fig. 7. It
may be seen that the return loss and rejection characteristics are
unchanged from those obtained from the analysis of the original

and polynomials.

III. TRANSFORMATIONS OF THE COUPLING MATRIX

A microwave filter may be realized directly from the folded
coupling matrix, the topology and strengths of its inter-resonator
couplings directly corresponding to the nonzero elements of the
coupling matrix. However, it is sometimes necessary to apply
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TABLE I
4–4 FILTERING FUNCTION—COEFFICIENTS OF E(s), F (s) AND P (s) POLYNOMIALS

TABLE II
4–4 FILTERING FUNCTION—COEFFICIENTS OF NUMERATOR AND DENOMINATOR POLYNOMIALS OF y (s) AND y (s)

TABLE III
4–4 FILTERING FUNCTION—RESIDUES, EIGENVALUES, AND EIGENVECTORS

Fig. 5. Transversal coupling matrix for 4–4 fully canonical filtering function.
The matrix is symmetric about the principal diagonal.

TABLE IV
FOURTH-DEGREE EXAMPLE—PIVOTS AND ANGLES OF THE SIMILARITY

TRANSFORM SEQUENCE FOR THE REDUCTION OF THE TRANSVERSAL

MATRIX TO THE FOLDED CONFIGURATION. TOTAL NUMBER OF

TRANSFORMS R = n = 6

a further series of rotations to the matrix, to transform it into
a form more convenient or more practical to the application in
hand, e.g., [10]–[12].

(a)

(b)

Fig. 6. Fully canonical synthesis example. Folded coupling matrix for 4–4
filtering function. (a) Coupling matrix. Matrix is symmetric about the principal
diagonal. (b) Coupling and routing schematic.

Here, two novel realizations are introduced; parallel-con-
nected two-port networks and the “cul-de-sac” configuration.
The first may be derived by grouping residues and forming
separate two-port subnetworks, which are then connected in
parallel between the source and load terminations. The second
is formed by a series of similarity transforms operating upon
the folded coupling matrix.
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Fig. 7. 4–4 fully canonical synthesis example: analysis of folded coupling
matrix. Rejection as s ! �j1 = 20 log (") = 30:407 dB.

A. Parallel-Connected Two-Port Networks

Being closely related to short-circuit admittance parameters,
the eigenvalues and corresponding residues of the filtering func-
tion may be separated into groups and subnetworks constructed
from them using the same procedures as described above. The
subnetworks may then be connected in parallel between the
source and load terminations to recover the original filtering
characteristics. The transverse array itself may be regarded as
a parallel connection of single-resonator “groups.”

Although the choice of residue groupings is arbitrary, it
will be found that difficult-to-realize couplings will be created
within the subnetworks, and between the internal nodes of the
subnetworks and the source–load terminations if the choice
of filtering function and of residue groupings is not restricted.
The restrictions are: 1) filtering functions may be fully canon-
ical, but must be symmetric and even degree and 2) residue
groups must consist of complementary pairs of residues and
eigenvalues, i.e., if the residues with indexes and ( ,

and , ) constitute a group or are part of a group,
then and . This implies that only
networks double-terminated between equal-value source and
load terminations can be synthesized.

If these restrictions are observed, the overall network will
consist of a number of two-port networks, the number corre-
sponding to the number of groups that the residues have been
divided into, each connected in parallel between the source and
load terminals. If the filtering function is fully canonical, the di-
rect source–load coupling will also be present.

Once the residues have been divided into groups, the syn-
thesis of the sub-matrices and their reduction to the folded form
follows exactly the same process as for a single network, as de-
scribed in Section II, working on each subnetwork individually.
To illustrate the process, an example is taken of a 23-dB return
loss sixth-degree characteristic, with two symmetrically placed
TZs at 1.3958 producing lobes of 25 dB on either side of
the passband, and a pair of real-axis zeros at 1.0749 to give
group-delay equalization over approximately 50% of the pass-
band. This filter will be synthesized as two subnetworks, one of
degree 2 and one of degree 4.

Following the procedure of Section II results in a set of
residues and eigenvalues for the characteristic as shown in
Table V.

Grouping residues and yields the folded matrix for
the second-degree subnetwork shown in Fig. 8. Now grouping
residues and yields the folded coupling matrix for
the fourth-degree subnetwork shown in Fig. 9.

Superimposing the two matrices yields the overall matrix
shown in Fig. 10.

The results of analyzing the overall coupling matrix are
shown in Fig. 11(a) (rejection/return loss) and Fig. 11(b) (group
delay), which show that the 25-dB lobe level and equalized
in-band group delay have been preserved.

Other solutions for this topology are available depending on
the combinations of residues that are chosen for the subnet-
works. However, whatever combination is chosen, at least one
of the input/output couplings will be negative. Of course, the
number of topology options increases as the degree of the fil-
tering function increases, for example, a tenth-degree filter may
be realized as two parallel-connected two-port networks, one
fourth degree and one sixth degree, or as three networks, one
second degree and two fourth degree, all connected in parallel
between the source and load terminations. Also, each subnet-
work itself may reconfigured to other two-port topologies with
further transformations, if feasible.

If the network is to be synthesized as parallel-coupled
pairs (see Fig. 12 for a sixth-degree example), a rather more di-
rect synthesis route exists. Starting with the transversal matrix, it
is only necessary to apply a series of rotations to annihilate half
thecouplings in the toprowfrompositions backto themid-
point of this row , i.e., rotations (see Fig. 2). Due
to the symmetry of the values in the outer rows and columns of the
transversal matrix, the corresponding entries to in
the last column will be annihilated simultaneously.

The pivots of the rotations to annihilate these couplings start
at position [ ] and progress toward the center of the matrix
until position [ , ]. For the sixth-degree example,
this is a sequence of rotations according to Table VI
and applied to the transversal matrix:

After the series of rotations, the matrix, as shown in
Fig. 12(a), is obtained, which corresponds to the coupling and
routing diagram in Fig. 12(b). In every case, at least one of the
input/output couplings will be negative. An interesting example
of a fourth-degree implementation of this topology realized in
dielectric resonator technology is given in [13].

B. “Cul-de-Sac” Configurations

The "cul-de-sac" configuration [14] is restricted to double-
terminated networks and will realize a maximum of TZs.
Otherwise it will accommodate even- or odd-degree symmetric
or asymmetric prototypes. It has an important advantage over
other configurations in that, whatever the prototype filtering
function, there will be only one negative coupling in the en-
tire network and there will be no “diagonal” cross-couplings,
which are sometimes awkward to realize in practice. Moreover,
its form lends itself to a certain amount of flexibility in the phys-
ical layout of its resonators.

A typical "cul-de-sac" configuration is shown in Fig. 13(a) for
a tenth-degree prototype with the maximum-allowable seven Tx
zeros (in this case, three imaginary-axis and two complex pairs).
There is a central “core” of a quartet of resonators in a square
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TABLE V
6-2-2 SYMMETRIC FILTERING FUNCTION—RESIDUES, EIGENVALUES, AND EIGENVECTORS

(a)

(b)

Fig. 8. Coupling sub-matrix and coupling/routing diagram for residues k = 1

and 6. (a) Coupling matrix. (b) Coupling and routing diagram.

(a)

(b)

Fig. 9. Coupling sub-matrix and coupling/routing diagram for residue group
k = 2; 3; 4; and 5. (a) Coupling matrix. (b) Coupling and routing diagram.

(a)

(b)

Fig. 10. Superimposed second- and fourth-degree sub-matrices. (a) Coupling
matrix. (b) Coupling and routing diagram.

formation [1, 2, 9, and 10 in Fig. 13(a)], straight-coupled to each
other (i.e., no diagonal cross-couplings). One of these couplings

(a)

(b)

Fig. 11. Analysis of parallel-connected two-port coupling matrix.
(a) Rejection and return loss. (b) Group delay.

(a)

(b)

Fig. 12. Symmetric 6-4 filter example—realized as parallel-coupled pairs.
(a) Coupling matrix. (b) Coupling and routing diagram.
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TABLE VI
SIXTH-DEGREE EXAMPLE—SIMILARITY TRANSFORM SEQUENCE FOR THE

REDUCTION OF THE TRANSVERSAL MATRIX TO THE PARALLEL-COUPLED

PAIRS FORMAT

(a)

(b)

(c)

Fig. 13. “Cul-de-sac” network configurations. (a) 10-3-4 network. (b) 8-3
network. (c) 7-1-2 network.

is always negative; the choice of which one is arbitrary. The
entry to and exit from the core quartet are from opposite corners
of the square [1 and 10, respectively, in Fig. 13(a)].

Some or all of the rest of the resonators are strung out in cas-
cade from the other two corners of the core quartet in equal num-
bers (even-degree prototypes) or one more than the other (odd-
degree prototypes). The last resonator in each of the two chains
has no output coupling, hence, the nomenclature “cul-de-sac”
for this configuration. Other possible configurations are shown
in Fig. 13(b) (eighth degree) and Fig. 13(c) (seventh degree).

C. Synthesis of the “Cul-de-Sac” Network

Fortunately, the synthesis of the "cul-de-sac" network is very
simple and is entirely automatic. Starting with the folded cou-
pling matrix, elements are annihilated using a series of regular
similarity transforms (for odd-degree filters), and “cross-pivot”
transforms (for even-degree filters), beginning with a main line
coupling near the center of the matrix, and working outwards
along or parallel to the antidiagonal. This gives a maximum of

transforms for even-degree prototypes and
for odd-degree prototypes.

The “cross-pivot” similarity transform for even-degree filters
is one where the coordinates of the element to be eliminated are
the same as the pivot of the transform, i.e., the element to be
annihilated lies on the cross-points of the pivot. The angle for
the annihilation of an element at the cross-point is different to
that of a regular annihilation and is given by

(17)

TABLE VII
PIVOT COORDINATES FOR THE REDUCTION OF THE N + 2 FOLDED MATRIX

TO THE “CUL-DE-SAC” CONFIGURATION

(a)

(b)

Fig. 14. “Cul-de-sac” configuration—seventh-degree example. (a) Original
folded coupling matrix. (b) After transformation to “cul-de-sac” configuration.

where are the coordinates of the pivot and also of the ele-
ment to be annihilated, is the angle of the similarity trans-
form, and is an arbitrary integer. Note that, for cross-pivot an-
nihilations of ( 0), where the self-couplings ,

. It is also allowable to have for when
, which will give a slightly different configuration alter-

native. For odd-degree filters, the angle formula takes the more
conventional form

(18)

Table VII gives the pivot coordinates and angle formula to
be used for the sequence of similarity transforms to be applied
to the folded coupling matrix for degrees 4–9, and a general
formula for the pivot coordinates for any degree 4.

An example is made of the double-terminated version of the
seventh-degree prototype that was used in [1]. This character-
istic had 23-dB return loss, a TZ at 1.2576 to give a rejection
lobe level of 30 dB on the upper side of the passband, and a com-
plex pair of Tx zeros at to give group-delay
equalization over approximately 60% of the passband.

After following the procedure of Section II, the folded
matrix shown in Fig. 14(a) is obtained. Applying a series of
two similarity transforms at pivots [3, 5] and [2, 6] (Table VII)
with angles according to (18) results in the coupling matrix of
Fig. 14(b). The corresponding coupling and routing diagram is
given in Fig. 13(c).
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(a)

(b)

Fig. 15. Seventh-degree "cul-de-sac" synthesis example—analysis of folded
coupling matrix. (a) Rejection and return loss. (b) Group delay.

The results of analyzing this coupling matrix are presented in
Fig. 15, confirming that the rejection lobe level and group-delay
equalization performances have been preserved intact.

As was noted above, all the couplings are positive, except for
one in the core quartet. This may be moved to any one of the
four couplings for the greatest convenience and implemented as
a probe, for example, if the filter is to be realized in coaxial-res-
onator technology where the other couplings are inductive irises
or inductive loops. Also, there are no diagonal couplings even
though the original prototype was asymmetric. If it is feasible
to implement a diagonal coupling between the input and output
of the core quartet, then an extra TZ may be realized, bringing
the maximum number realizable by this topology to . This
coupling in the "cul-de-sac" core will have the same value as in
the folded coupling matrix.

IV. CONCLUSIONS

In this paper, a simple and general method for the synthesis of
the “ ” coupling matrix in the folded cross-coupled array
configuration has been presented. The coupling matrix is
applicable to symmetric or asymmetric, single- or double-termi-
nated, and even- or odd-degree filtering functions, and will ac-
commodate the fully canonical and multiple-input/output cou-
pling configurations.

The folded coupling matrix may be used directly for
the design of a microwave filter if it is convenient to do so, or
used as the starting point for the application of a further series of
similarity transforms to reconfigure it into a topology more con-
venient for the technology or production process it is intended

to employ. Two examples of such reconfigurations are included
in the paper: the parallel-coupled two-port network configura-
tion and the “cul-de-sac” filter configuration. The latter fea-
tures some important constructional simplifications that should
ease the volume production process for high-performance mi-
crowave filters for the wireless industry.
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